课堂聚焦

对化 比学 实 教 山 板 验学 , 芙 初 在 中 级 中学 宋 文汉

中

市

又如在讲授物质燃烧的条件 时, 我先设计以下对比实验, 准备 二块棉花, 其中一块棉花浸泡在盛 有纯酒精的烧杯中, 待均匀湿透后 取出,用镊子夹住,在火焰上点 燃,另一块棉花浸泡在盛有水的烧 杯中在火焰上点燃。这时学生个个 睁大眼睛企盼着所希望的实验现 象, 学生进入了学习心理的最佳状 态,这样能大大地激发学生探索科 学、揭示奥秘的兴趣,提高他们学 习化学的主动性和积极性。

一、对比实验,激发学生学

习兴趣

心理学家夸美纽斯说: "兴趣 是最好的老师。" 化学是一门以实验 为基础的自然科学, 化学实验中的 奇幻现象,会使学生对化学产生很 浓厚的学习兴趣,它是学习动机中 最现实最活泼的心里成分, 是学习 动力的源泉, 能激发他们努力探索 化学奥秘的强烈求知欲望。因而在 化学教学中巧妙恰当的设计对比实 验更能激发学生学习化学的兴趣。 例如在教二氧化碳与石灰水反应时. 我安排了以下对比实验:准备两只 试管,一只放水,一只放石灰水, 让两个学生面向全体同学同时向两 个试管吹气,其中一个没有变化, 另一个很快变浑浊。没有变化的同 学还以为是自己偷懒, 又吹了两口 气,但仍没有变浑浊,逗得下面的 同学大笑,该同学有一种被老师捉 弄的感觉。但当我向这只试管里滴 加紫色的石蕊时,经过振荡立即变 成红色,再次将二氧化碳与水的反 应又做了很好的解释。这时全体学 生才恍然大悟, 明白了老师的目的, 学生的兴奋点很高,个个跃跃欲试, 对化学充满了极高的兴趣。

二、 对比实验, 强化学生对 概念的理解

有些化学概念比较抽象学生难 于理解,设计对比性实验,边引导 边实验边分析, 抽象出事物的本质 特征,帮助学生形成概念,完成认 识上的飞跃。例如我们运用对比试 验改进新课程人教版催化剂概念的 教学过程。按照初中教材上的催化 剂有关内容进行教学时发现, 学生 会出现一些认识误区: 1.由于在过 氧化氢和氯酸钾的分解反应中都使 用的是二氧化锰做催化剂, 所以学 生认为只有二氧化锰是催化剂; 2. 催化剂都是加快反应速率。如何帮 助学生消除学习误区,建立比较全 面、科学的催化剂概念呢? 我们进 行了以下的实验设计。

对比实验①: 有无催化剂对比 实验

取两支试管,加入等体积等浓 度的过氧化氢溶液, 向另外一只试 管中加入少量 MnO。固体, 立即剧 烈反应,放出大量气体,让学生充 分感受到催化剂对反应速率的影 响,对比有无催化剂的不同。

对比实验②:不同催化剂催化 效果对比实验

取三支试管,加入等体积等浓 度的过氧化氢溶液,其中一支作为 空白对照, 向另外两支试管中分别 加入等量的 MnO2和 FeCl3 使得反 应剧烈,产生大量气体, FeCl,也 能使反应速率加快,但是比较平 稳,没有加入MnO2剧烈。这组实 验的设计旨在让学生感受到催化剂 有多种,催化的效果有差别。

对比实验③:正负催化剂对比 实验

取二支试管,分别加入等体积 等浓度硫酸溶液, 再各加入一根无 锈铁钉,即可观察到铁钉表面有大 量气泡产生。然后在其中一支试管 中加入少量乌洛托品 (六亚甲基四 胺)粉末,振荡试管使其溶解,可 以发现加入乌洛托品的试管里反应 速度逐渐变慢到几乎停止反应。说 明乌洛托品减慢和阻止了铁与稀硫 酸反应。本实验的设计旨在让学生 感受到催化剂既可以加快反应速 率,也可以减慢反应速率。

在以上三组对比实验的基础 上, 引导学生讨论催化剂概念的内 涵和外延, 达到对催化剂认识的几 点共识,第一,催化剂能够改变反 应速率,可能加快或减慢;第二, 不同的催化剂对同一反应催化效果 不同;第三,同样的催化剂并不能 催化所有反应,催化剂与反应有特 定关系。通过以上三组对比实验的 设计、实施以及相关问题的讨论, 学生对于催化剂的认识就比较全面、 科学、准确,对于学生今后进入高 中的学习打下了比较好的基础。

三、对比实验,培养学生的观 察分析能力

在学习二氧化碳实验室制取这 一节内容时, 如果教师只照本宣 科, 讲明实验室制取二氧化碳用的 是稀盐酸和石灰石,这样学生虽然 知道了用什么药品可以制取二氧化 碳, 但不明白为什么要选取稀盐酸 和石灰石来制取,而不用其它的酸 或其它药品制取的原因。此时可以 设计一组对比实验:

实验一: 石灰石+稀硫酸, 观 察现象。

实验二: 硫酸钠+稀盐酸, 观